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1 Verify that
1

n2
− 1

(n + 1)2
= 2n + 1

n2(n + 1)2
. [1]

Let SN =
N

∑
r=1

2r + 1

r2(r + 1)2
. ExpressSN in terms ofN. [2]

Let S = lim
N→∞ SN. Find the least value ofN such thatS − SN < 10−16. [3]

2 Prove by mathematical induction that, for all positive integersn,

dn

dxn ( 1
2x + 3

) = (−1)n n!2n

(2x + 3)n+1
. [6]

3 The equation

x3 + 5x2 − 3x − 15= 0

has rootsα, β, γ . Find the value ofα2 + β2 + γ 2. [3]

Hence show that the matrix 1 α β

α 1 γ

β γ 1

 is singular. [4]

4 A curve has parametric equations

x = 2 sin 2t, y = 3 cos 2t,

for 0 < t < 1
2π. For the point on the curve wheret = 1

3π, find the value of

(i)
dy
dx

, [3]

(ii)
d2y

dx2
. [4]

5 Use de Moivre’s theorem to express cos4θ in the form

a cos 4θ + b cos 2θ + c,

wherea, b, c are constants to be found. [4]

Hence evaluate

ã
1
4
π

0
cos4θ dθ,

leaving your answer in terms ofπ. [3]
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6 Find the general solution of the differential equation

d2x

dt2
+ 4

dx
dt

+ 4x = sin 2t. [6]

Describe the behaviour ofx ast → ∞, justifying your answer. [2]

7 Show that
d
dt

(t(1+ t3)n) = (3n + 1)(1+ t3)n − 3n(1+ t3)n−1. [3]

Let In = ã 1

0
(1+ t3)n dt. Using the above result, or otherwise, show that

(3n + 1)In = 2n + 3nIn−1. [2]

Hence evaluateI3. [4]

8 The curveC has polar equationr = 1+ sinθ for −1
2π ≤ θ ≤ 1

2π. Draw a sketch ofC. [2]

The area of the region enclosed by the initial line, the half-lineθ = 1
2π, and the part ofC for which

θ is positive, is denoted byA1. The area of the region enclosed by the initial line, and the part ofC for
whichθ is negative, is denoted byA2. Find the ratioA1 : A2, giving your answer correct to 1 decimal
place. [8]

9 Find a cartesian equation of the planeΠ containing the lines

r = 3i+ k + s(2i+ j − k) and r = 3i− 7j+ 10k+ t(i − 3j+ 4k). [4]

The line l passes through the pointP with position vector 6i− 2j + k and is parallel to the vector
2i+ j − 4k. Find

(i) the position vector of the point wherel meetsΠ, [3]

(ii) the perpendicular distance fromP to Π, [3]

(iii) the acute angle betweenl andΠ. [3]

10 A curveC has equation

y = 5(x2 − x − 2)
x2 + 5x + 10

.

Find the coordinates of the points of intersection ofC with the axes. [2]

Show that, for all real values ofx, −1 ≤ y ≤ 15. [4]

SketchC, stating the coordinates of any turning points and the equation of the horizontal asymptote.
[7]

[Question 11 is printed on the next page.]
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11 Answer onlyone of the following two alternatives.

EITHER

The curveC has equationy = 1
3x

1
2(3 − x), for 0 ≤ x ≤ 3. Find the mean value ofy with respect tox

over the interval 0≤ x ≤ 3. [4]

Show that
ds
dx

= 1
2(x−1

2 + x
1
2),

wheres denotes arc length, and find the arc length ofC. [6]

Find the area of the surface generated whenC is rotated through 2π radians about thex-axis. [4]

OR

Find the eigenvalues and corresponding eigenvectors of the matrixA, where

A =  1 1 2
0 2 2

−1 1 3

 . [7]

The linear transformation T :>3 → >3 is defined byx  → Ax. Let e, f be two linearly independent
eigenvectors ofA, with corresponding eigenvaluesλ and µ respectively, and letΠ be the plane,
through the origin, containinge andf. By considering the parametric equation ofΠ, show that all
points ofΠ are mapped by T onto points ofΠ. [3]

Find cartesian equations of three planes, each with the property that all points of the plane are mapped
by T onto points of the same plane. [4]
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